

74 183.85 W Tungsten	2H	Deuterium 2H Deute								
14:00- 14:15		Institutional Greetings and Welcome Introduction								
	1 st session Chair: Davide Ranieri, Mariagrazia Lettieri									
	OC01	XXXIV	Vanessa Rosciardi	"Green" Poly(vinyl alcohol)/Starch based cryogels for the cleaning of works of art: Application, characterization, and investigation of the Amylose/Amylopectin structural role						
	OC02	XXXV	Lapo Renai	Comparison of chemometric workflows strategies for potential exposure markers discovery and false positive reduction in untargeted metabolomics: application to the serum analysis by LC-HRMS after intake of <i>Vaccinium</i> fruits supplements						
	OC03	XXXV	Debora Pratesi	Glycomimetic azasugars for selective inhibition of Carbonic Anhydrases						
14:15- 16:00	OC04	XXXV	Martina Vizza	Electrodeposition of poly(3,4- ethylenedioxythiophene), CdSe and MoS ₂ on Silicon electrodes to obtain interesting technological and catalytic surfaces						
	OC05	XXXVI	Gavino Bassu	Poly(ethylene glycol)-based hydrogels as transparent porous network for diffusivity studies						
	OC06	XXXVI	Lorenzo Baldini	Synthesis and elaboration of novel heterocyclic scaffolds through C-H bond activation for application as peptidomimetics						
	OC07	XXXVI	Patrick Severin Sfragano	Bicyclic Peptides as Bioreceptors towards the electrochemical detection of the Human Urokinase- Type Plasminogen Activator						

16:00-16:20 - Break

	2 nd session Chair: Mariagrazia Lettieri, Davide Ranieri					
	OC08	XXXIV (online)	Raffaello Nardin	The link between past, and future: investigating climatic and environmental variability through Ice Records from East Antarctica		
	OC09	XXXV (online)	Lorenzo Briccolani Bandini	Adsorption of Bio-Molecules on Metal Surfaces: a Computational Study		
	OC10	XXXVI (online)	Andrea Comparini	Development of aluminum alloys plating processes via sustainable galvanic processes		
16:20- 17:40	OC11	XXXVII	Elena Merli	Development of eco-friendly hydrogels with structures optimized for nano / micro filtration, selective absorption and prevention of biofouling		
17.40	OC12	XXXVII	Alessandro Gerace	Intelligent and sustainable synthesis and processing of innovative permanent magnets		
	OC13 XXXVII Laura Vespignani	Study of new materials with low environmental impact and their use in the conservation of Cultural Heritage				
	OC14	XXXVII	Michele Casoria	From a bioinformatic approach to synthetic conformational peptide epitopes to disclose molecular mechanism of aberrant immune response in auto-immune diseases.		
	OC15	XXXVII (online)	Margherita Verrucchi	Electrodeposition and surfaces analysis in galvanic for industry 4.0		

	Evening session Chairs: Gina Elena Giacomazzo; Marco Bonechi					
	OC16	XXXVII (online)	Sara Aquilia	Development of macromolecular and cross-linked materials based on proteins/peptides from vegetable sources		
20:00- 20:55	OC17	XXXVI (online)	Giulia Guidelli	New formulation approaches for the development of cleanser with high efficacy and gentle on the skin eco-friendly proven		
20.00	OC18	XXXIV (online)	Andrea Ridolfi	Probing the mechanical response of lipid membranes at the nanoscale		
	OC19	XXXV (online)	Arianna Balestri	Smart amphiphilic block copolymers as stabilizers of lipid-based drug delivery systems		

20 January 2022

1st Session

Chair: Mert Acar, Martina Vizza

	OC20	XXXIV	Francesca Torrini	An enzyme-linked immunosorbent assay (BELISA) for the analysis of a small neuropeptide by using molecularly imprinted polymer-coated microplates
	OC21	XXXIV	Fabio Santanni	A Novel Series of Hydrogen-Free M ^{II} (Cu ^{II} , Ni ^{II}) Complexes of 1,3,2-Dithiazole-4-thione-5-thiolate Ligand as Potential Molecular Spin Qubits on Surface
	OC22	XXXV (online)	Giulia Mugnaini	Photocross-linked gelatin methacrylate porous microparticles for drug release
14:00- 15:55	OC23	XXXV	Gheorghe Melinte	Electrochemical platforms for allergens detection
	OC24	XXXV	Mariagrazia Lettieri	Melanochrome-based colorimetric assay for quantitative detection of levodopa in Parkinson's drugs
	OC25	XXXV	Agnieszka Staśkiewicz	Design, synthesis, conformational studies, and biological activity of clicked oxytocin analogues
	OC26	XXXVI	Sara Calandra	Optimization of the binder selection protocol for radiocarbon dating of historical mortars

15:55-16:15 - Break

2nd session

Chair: Martina Vizza; Mert Acar

	OC27	XXXIV (online)	Andrea Albino	Structural and Vibrational Properties of Magnetic Systems from the Bulk Phase to the Adsorption on Surface		
16:15- 17:55	OC28	XXXV (online)	Gina Elena Giacomazzo	Ruthenium (II) polypyridyl complexes: playing with structural parameters to design promising light- responsive therapeutic agents		
	OC29	XXXVI	Michela Lupi	Molecular and macromolecular hetero[4]helicenes: synthesis, red-ox properties and applications		
	OC30	XXXVI	Kristian Vasa	Design and synthesis of macromolecular and nanostructured carbonic anhydrases-based materials		

	OC31	XXXVI	Simi Maria Emilia Mangani	Interdisciplinary study of Majolica of Montelupo: preliminary results
	OC32	XXXVII	Michael Quagliata	Peptides inhibitors of Protein-Protein Interactions: the COVID-19 case of study
	OC33	XXXVII	Lorenzo Bracaglia	Investigating the role of disorder in structurally heterogeneous proteins
	OC34	XXXVII	Daniela Porcu	New strategies for the monitoring and the inhibition of metals and alloys corrosion in Cultural Heritage
	OC35	XXXVII	Michelangelo Fichera	Production of carbonaceous materials from biomass of high environmental hazard, their characterization and application on water purification

21 January 2022

1st Session

Chair: Saul Santini; Chiara Sarti

	OC36	XXXIV	Lorenzo Fabbri	Electrodeposition and characterization of industrial and technological interesting surfaces
	OC37	XXXV	Gianmarco Maria Romano	Polyamine receptors as fluorescent chemosensors for anti-inflammatory nonsteroidal drugs in aqueous media
	OC38	XXXV (online)	Stefano Mauro Martinuzzi	Measurement of metal coatings thickness by X- ray spectrometric method without the need for certified standards
	OC39	XXXV	Giacomo Lucchesi	A new neuroprotective bola-amphiphile: the trodusquemine
9:00- 10:55	OC40	XXXVI	Valentina Vitali	Enlarging the scenario of site direct ¹⁹ F labelling in NMR spectroscopy
	OC41	XXXVI	Davide Ranieri	Synthesis and magnetic studies of molecular spin qubits
	OC42	XXXVII	Mert Acar	Smart Autonomous Responsive Materials
	OC43	XXXVII (online)	Andrea Dali	Advanced spectroscopic study aiming to the understanding of the heme-biosynthesis pathway of gram-positive bacteria
	OC44	XXXVII	Lucrezia Cosottini	Ferritin-based anticancers
	OC45	XXXVII	Lorenzo Pacini	Greening peptide chemistry, a necessary step to the future

10:55-11:15 - Break

2nd Session

Chair: Debora Pratesi; Lapo Renai

11:15- 12:40	OC46	XXXIV (online)	Annunziata D'Ercole	Development and scale-up of synthetic strategies for exotic macrocyclisation to increase druggability of peptides as active pharmaceutical ingredients of industrial and academic interest
-----------------	------	----------------	------------------------	--

OC47	XXXV	Jacopo Tricomi	Drug-protein interactions: "from first to last" workflow in three different cases of studies
OC48	XXXV	Letizia Pontoriero	NMR reveals specific tracts within the intrinsically disordered regions of the SARS-CoV-2 Nucleocapsid protein involved in RNA encountering
OC49	XXXVI	Saul Santini	Development of analytical procedures for the determination of emerging organic compounds
OC50	XXXVII	Chiara Sarti	Green Deal and Zero Pollution strategy: innovative solutions for emerging contaminants removal in wastewater and runoff water
OC51	XXXVII	Alice Cappitti	Design and synthesis of high performance polymers
OC52	XXXVII	Marco Bonechi	Modified surfaces of technological and industrial relevance

12:40-14:00 – Lunch Break

3rd Session

Chair: Francesca Torrini; Davide Ranieri

	OC53	XXXIV	Andrea Casini	Jin Shofu starch-based nano-sized hydrogel dispersions for the consolidation of modern and contemporary paintings
	OC54	XXXIV (online)	Anna Ranzenigo	Synthesis of hydroxylated indolizidines and diamino suberic acid derivatives: use of tartaric acid and other approaches
	OC55	XXXV	Maria Giulia Davighi	Stimuli-responsive pharmacological chaperones for Gaucher Disease
	OC56	XXXV (online)	Jacopo Cardellini	Membrane Phase Drives the Assembly of Gold Nanoparticles on Biomimetic Lipid Bilayers
14:00- 16:30	OC57	XXXVI	Francesca Porpora	Development of a multi-analytical protocol to study the "vinegar syndrome" on films made of cellulose triacetate
	OC58	XXXVII	Serena Cabigliera	Environmental impact of microfibers (MFs) pollution and the developing of efficient and sustainable mitigation strategies
	OC59	XXXVII	Alessandro Veneri	Development of flexible molecular and inorganic hybrid solar cells for the design of self-powered greenhouses
	OC60	XXXVII	Francesca Buco	Gold nanoparticles coated with D-(+)- galactose as potential therapeutics for lysosomal storage disorders

	OC61	XXXVII (online)	Yschtar Tecla Simonini Steiner	Recognition of emerging pollutants (Eps) with artificial fluorescence chemical sensors: a supramolecular approach		
	OC62	XXXIV	Irene Vettori	Monomeric 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA): structural influences on solute-solvent interactions and spectroscopic properties		
	OC63	XXXVII (online)	Fernando Soto- Bustamante	Optimizing the structure of sustainable hydrogels for nano/microfiltration, selective absorption, and anti-biofouling behavior		
16:30- 16:50	Conclusions: Prof.ssa Anna Maria Papini; Martina Vizza					